
evergreen Documentation
Release 0.2.0

Saúl Ibarra Corretgé

March 31, 2014

Contents

i

ii

CHAPTER 1

Overview

Evergreen is a Python library to help you write multitasking and I/O driven applications in a cooperative way. Unlike
when using threads, where the execution model is preemptive and thus not controlled by you, using a cooperative
model allows you to choose what runs and when. Evergreen will make this easier.

1

evergreen Documentation, Release 0.2.0

2 Chapter 1. Overview

CHAPTER 2

Features

• Cooperative multitasking abstractions similar to threads

• Multiple synchronization primitives

• Event loop driven scheduler

• Non-blocking I/O

• Convenience APIs for writing network server software

• Cooperative concurrent.futures style APIs

• Cooperative versions of certain standard library modules

• As little magic as possible

3

evergreen Documentation, Release 0.2.0

4 Chapter 2. Features

CHAPTER 3

Documentation

3.1 Design

The following sections contain an explanation of the design of the different parts that compose evergreen. Evergreen
was inspired by similar libraries such as Gevent and Eventlet, but some of the key ideas are different:

• Limit the amount of ‘magic’ to the minimum possible

• Cooperative tasks should look like threads

• APIs for dealing with tasks should mimic those used in threading

• Task scheduling has to be predictable and consistent, but without being exposed to the user

• The event loop (or hub or reactor) is a first class citizen and it’s not hidden

3.1.1 Event loop

The event loop can be considered the central point of evergreen, it deals with timers, I/O and task scheduling (de-
scribed later). The event loop API is heavily inspired by PEP 3156, so it’s possible that in the future the event loop
implementation evergreen uses can be replaced. At the moment evergreen uses puyv as the underlying event loop.

In evergreen only one loop may exist per thread, and it has to be manually created for threads other than the main
thread. This would be the structure of a normal program using evergreen:

import evergreen

Create the global loop
loop = evergreen.EventLoop()

Setup tasks
...

Start the loop
loop.run()

No tasks will start working until loop.run is called unless a blocking operation is performed, in which case the loop is
automatically started. For long running processes such as servers, it’s advised to explicitly create the event loop, setup
tasks and manually run it. Small scripts can rely on the fact that the main thread’s loop is automatically created and
run when an opperation cooperatively blocks.

5

https://github.com/saghul/pyuv

evergreen Documentation, Release 0.2.0

3.1.2 Tasks

The cooperative task abstraction provided by evergreen (through the Task class). The public API for this class mimics
that of a threading.Thread thread, but it’s scheduled cooperatively.

Tasks are implemented using the fibers library.

Here are some ‘rules’ that apply to tasks:

• Tasks don’t yield control to each other, they must always yield control to the loop, or schedule a switch to the
desired task in the loop, this ensures predictable execution order and fairness.

• In order to exchange values between tasks any of the provided synchronization primitives should be used, the
tasks themselves don’t provide any means to do it.

3.1.3 Scheduling

The scheduler has no public interface. You interact with it by switching execution to the loop. In fact, there is no
single object representing the scheduler, its behavior is implemented by the Task, Future and other classes using only
the public interface of the event loop.

The easiest way to suspend the execution of the current task and yield control to the loop so that other tasks can run is
to use:

evergreen.sleep(0)

The only functions that suspend the current task are those which ‘block’, for example lock or socket functions.

3.2 API documentation

Documentation for the modules composing the public API for Evergreen.

3.2.1 Modules

The Event Loop

The event loop is the main entity in evergreen, together with tasks. It takes care of running all scheduled operations
and provides time based callback scheduling as well as I/O readyness based callback scheduling.

class evergreen.loop.EventLoop
This is the main class that sets things in motion in evergreen. I runs scheduled tasks, timers and I/O operations.
Only one event loop may exist per thread and it needs to be explicitly created for threads other than the main
thread. The current loop can be accessed with evergreen.current.loop.

classmethod current()
Returns the event loop instance running in the current thread.

call_soon(callback, *args, **kw)
Schedule the given callback to be called as soon as possible. Returns a Handler object which can be used
to cancel the callback.

call_from_thread(callback, *args, **kw)
Schedule the given callback to be called by the loop thread. This is the only thread-safe function on the
loop. Returns a Handler object which can be used to cancel the callback.

6 Chapter 3. Documentation

https://github.com/saghul/python-fibers

evergreen Documentation, Release 0.2.0

call_later(delay, callback, *args, **kw)
Schedule the given callback to be called after the given amount of time. Returns a Handler object which
can be used to cancel the callback.

call_at(when, callback, *args, **kw)
Schedule the given callback to be called at the given time. Returns a Handler object which can be used to
cancel the callback.

time()
Returns the current time.

add_reader(fd, callback, *args, **kw)
Create a handler which will call the given callback when the given file descriptor is ready for reading.

remove_reader(fd)
Remove the read handler for the given file descriptor.

add_writer(fd, callback, *args, **kw)
Create a handler which will call the given callback when the given file descriptor is ready for writing.

remove_writer(fd)
Remove the write handler for the given file descriptor.

add_signal_handler(signum, callback, *args, **kw)
Create a handler which will run the given callback when the specified signal is captured. Multiple handlers
for the same signal can be added. If the handler is cancelled, only that particular handler is removed.

remove_signal_handler(signum)
Remove all handlers for the specified signal.

switch()
Switch task execution to the loop’s main task. If the loop wasn’t started yet it will be started at this point.

run()
Start running the event loop. It will be automatically stopped when there are no more scheduled tasks or
callbacks to run.

Note: Once the loop has been stopped it cannot be started again.

run_forever()
Similar to run but it will not stop be stopped automatically even if all tasks are finished. The loop will be
stopped when stop() is called. Useful for long running processes such as servers.

stop()
Stop the event loop.

destroy()
Free all resources associated with an event loop. The thread local storage is also emptied, so after destroy-
ing a loop a new one can be created on the same thread.

class evergreen.loop.Handler
This is an internal class which is returned by many of the EventLoop methods and provides a way to cancel
scheduled callbacks.

Note: This class should not be instantiated by user applications, the loop itself uses it to wrap callbacks and
return it to the user.

cancel()
Cancels the handle, preventing its callback from being executed, if it wasn’t executed yet.

3.2. API documentation 7

evergreen Documentation, Release 0.2.0

Warning: Like every API method other than EventLoop.call_from_thread, this function is not thread
safe, it must be called from the event loop thread.

Finding the ‘current loop’

evergreen provides a convenience mechanism to get a reference to the loop running in the current thread:

current_loop = evergreen.current.loop

If a loop was not explicitly created in the current thread RuntimeError is raised.

Handling signals

While the signal module works just fine, it’s better to use the signal handling functions provided by the EventLoop. It
allows adding multiple handlers for the same signal, from different threads and the handlers are called in the appropri-
ate thread (where they were added from).

Task: a cooperative thread

The tasks module provides one of the most important pieces of evergreen, the Task class along with some utility
functions. The Task class encapsulates a unit of cooperative work and it has an API which is very similar to the Thread
class in the standard library.

evergreen.tasks.sleep(seconds)
Suspend the current task until the given amount of time has elapsed.

evergreen.tasks.spawn(func, *args, **kwargs)
Create a Task object to run func(*args, **kwargs) and start it. Returns the Task object.

evergreen.tasks.task()
Decorator to run the decorated function in a Task.

class evergreen.tasks.Task(target=None, args=(), kwargs={})
Runs the given target function with the specified arguments as a cooperative task.

classmethod current()
Returns the current running task instance.

start()
Schedules the task to be run.

run()
Main method the task will execute. Subclasses may want to override this method instead of passing
arguments to __init__.

join(timeout=None)
Wait until the task finishes for the given amount of time. Returns a boolean flag indicating if the task
finished the work or not.

kill(typ=TaskExit[, value[, tb]])
Raises the given exception (TaskExit by default) in the task. If the task wasn’t run yet it will be raised the
moment it runs. If the task was already running, it will be raised when it yields control.

Calling this function doesn’t unschedule the current task.

8 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

exception evergreen.tasks.TaskExit
Exception used to kill a single task. It does not propagate.

Synchronization primitives: Channel

Channels are the simplest mechanism for 2 tasks to exchange data.

class evergreen.channel.Channel
A synchronous communication pipe between 2 tasks.

send(data)
Send data over the channel. The calling task will be blocked if there is no task waiting for the data on the
other side.

send_exception(exc_type, exc_value=None, exc_tb=None)
Send the given exception. It will be raised on the receiving task.

receive()
Wait for data to arrive on the channel.

Synchronization primitives: Event

This is one of the simplest mechanisms for communication between tasks: one task signals an event and other threads
wait for it.

class evergreen.event.Event
This class implements a cooperative version of threading.Event.

is_set()
Returns True if the flag is set, False otherwise.

set()
Set the internal flag to true. All tasks waiting for it to become true are awakened. Tasks that call wait()
once the flag is true will not block at all.

clear()
Reset the internal flag to false. Subsequently, tasks calling wait() will block until set() is called to set the
internal flag to true again.

wait([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise,
block until another task calls set() to set the flag to true, or until the optional timeout occurs. The internal
flag is returned on exit.

Synchronization primitives: locks

This module implements synchronization primitives to be used with cooperative tasks, in an analogous and API com-
patible way as threading module’s primitives which are used with threads.

class evergreen.locks.Semaphore([value])
A semaphore manages an internal counter which is decremented by each acquire() call and incremented by
each release() call. The counter can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some other task calls release().

The optional argument gives the initial value for the internal counter; it defaults to 1. If the value given is less
than 0, ValueError is raised.

3.2. API documentation 9

evergreen Documentation, Release 0.2.0

acquire([blocking])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by one
and return immediately. If it is zero on entry, block, waiting until some other task has called release()
to make it larger than zero. This is done with proper interlocking so that if multiple acquire() calls are
blocked, release() will wake exactly one of them up. The implementation may pick one at random, so
the order in which blocked tasks are awakened should not be relied on. Returns true (or blocks indefinitely).

When invoked with blocking set to false, do not block. If a call without an argument would block, return
false immediately; otherwise, do the same thing as when called without arguments, and return true.

When invoked with a timeout other than None, it will block for at most timeout seconds. If acquire does
not complete successfully in that interval, return false. Return true otherwise.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another
task is waiting for it to become larger than zero again, wake up that task.

class evergreen.locks.BoundedSemaphore([value])
Class implementing bounded semaphore objects. A bounded semaphore checks to make sure its current value
doesn’t exceed its initial value. If it does, ValueError is raised. In most situations semaphores are used to
guard resources with limited capacity. If the semaphore is released too many times it’s a sign of a bug. If not
given, value defaults to 1.

class evergreen.locks.RLock
This class implements reentrant lock objects. A reentrant lock must be released by the task that acquired it.
Once a task has acquired a reentrant lock, the same task may acquire it again without blocking; the task must
release it once for each time it has acquired it.

acquire(blocking=True, timeout=None)
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this task already owns the lock, increment the recursion level by one,
and return immediately. Otherwise, if another task owns the lock, block until the lock is unlocked. Once
the lock is unlocked (not owned by any task), then grab ownership, set the recursion level to one, and
return. If more than one task is blocked waiting until the lock is unlocked, only one at a time will be able
to grab ownership of the lock. There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when called without arguments,
and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argument would
block, return false immediately; otherwise, do the same thing as when called without arguments, and return
true.

When invoked with the floating-point timeout argument set to a positive value, block for at most the number
of seconds specified by timeout and as long as the lock cannot be acquired. Return true if the lock has been
acquired, false if the timeout has elapsed.

release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any task), and if any other tasks are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains
locked and owned by the calling task.

Only call this method when the calling task owns the lock. A RuntimeError is raised if this method is
called when the lock is unlocked.

There is no return value.

10 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

class evergreen.locks.Condition(lock=None)
This class implements condition variable objects. A condition variable allows one or more tasks to wait until
they are notified by another task.

If the lock argument is given and not None, it must be a Semaphore or RLock object, and it is used as the
underlying lock. Otherwise, a new RLock object is created and used as the underlying lock.

acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the
return value is whatever that method returns.

release()
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is
no return value.

wait(timeout=None)
Wait until notified or until a timeout occurs. If the calling task has not acquired the lock when this method
is called, a RuntimeError is raised.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notify_all() call for the same condition variable in another task, or until the optional timeout oc-
curs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release() method, since this may
not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface
of the RLock class is used, which really unlocks it even when it has been recursively acquired several
times. Another internal interface is then used to restore the recursion level when the lock is reacquired.

The return value is True unless a given timeout expired, in which case it is False.

notify(n=1)
By default, wake up one task waiting on this condition, if any. If the calling task has not acquired the lock
when this method is called, a RuntimeError is raised.

This method wakes up at most n of the tasks waiting for the condition variable; it is a no-op if no tasks are
waiting.

The current implementation wakes up exactly n tasks, if at least n tasks are waiting. However, it’s not safe
to rely on this behavior. A future, optimized implementation may occasionally wake up more than n tasks.

Note: an awakened task does not actually return from its wait() call until it can reacquire the lock. Since
notify() does not release the lock, its caller should.

notify_all()
Wake up all tasks waiting on this condition. This method acts like notify(), but wakes up all wait-
ing tasks instead of one. If the calling task has not acquired the lock when this method is called, a
RuntimeError is raised.

Synchronization primitives: queues

The queue module implements multi-producer, multi-consumer queues, useful for exchanging data between tasks.

This module implements API compatible cooperative versions of the different queue implementations that can be
found in the Python standard library.

The module implements three types of queue, which differ only in the order in which the entries are retrieved. In a
FIFO queue, the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first

3.2. API documentation 11

evergreen Documentation, Release 0.2.0

retrieved (operating like a stack). With a priority queue, the entries are kept sorted (using the heapq module) and the
lowest valued entry is retrieved first.

class evergreen.queue.Queue(maxsize)
Constructor for a FIFO queue. maxsize is an integer that sets the upper limit on the number of items that can be
placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

class evergreen.queue.PriorityQueue(maxsize)
Constructor for a LIFO queue. maxsize is an integer that sets the upper limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

class evergreen.queue.LifoQueue(maxsize)
Constructor for a priority queue. maxsize is an integer that sets the upper limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by
sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form:
(priority_number, data).

Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.

Queue.qsize()
Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will not
block, nor will qsize() < maxsize guarantee that put() will not block.

Queue.empty()
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that a sub-
sequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a subsequent
call to get() will not block.

Queue.full()
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a subsequent
call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent call to put()
will not block.

Queue.put(item[, block[, timeout]])
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until
a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full
exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue if a
free slot is immediately available, else raise the Full exception (timeout is ignored in that case).

Queue.put_nowait(item)
Equivalent to put(item, False).

Queue.get([block[, timeout]])
Remove and return an item from the queue. If optional args block is true and timeout is None (the default),
block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds
and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an
item if one is immediately available, else raise the Empty exception (timeout is ignored in that case).

Queue.get_nowait()
Equivalent to get(False).

12 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer
tasks.

Queue.task_done()
Indicate that a formerly enqueued task is complete. Used by queue consumer tasks. For each get() used to
fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in the queue.

Queue.join()
Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever
a consumer task calls task_done() to indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join() unblocks.

Example of how to wait for enqueued tasks to be completed

def worker():
while True:

item = q.get()
do_work(item)
q.task_done()

q = Queue()
for i in range(num_worker_tasks):

t = Task(target=worker)
t.start()

for item in source():
q.put(item)

q.join() # block until all tasks are done

Exceptions

exception evergreen.queue.Empty
Exception raised when non-blocking get() (or get_nowait()) is called on a Queue object which is empty.

exception evergreen.queue.Full
Exception raised when non-blocking put() (or put_nowait()) is called on a Queue object which is full.

Task local storage

This module provides the equivalent to threading.local but applying the concept to tasks.

class evergreen.local.local
A class that represents task-local data. Task-local data are data whose values are task specific. To manage
task-local data, just create an instance of local (or a subclass) and store attributes on it

mydata = local()
mydata.x = 1

The instance’s values will be different for separate tasks.

3.2. API documentation 13

evergreen Documentation, Release 0.2.0

Managing timeouts

Timeout objects allow to stop a task after a given amount of time. This is useful to abort a network connection if the
response is taking too long to arrive, for example.

class evergreen.timeout.Timeout([seconds[, exception]])
Raises exception in the current task after timeout seconds.

When exception is omitted or None, the Timeout instance itself is raised. If seconds is None or < 0, the timer
is not scheduled, and is only useful if you’re planning to raise it directly.

Timeout objects are context managers, and so can be used in with statements. When used in a with statement,
if exception is False, the timeout is still raised, but the context manager suppresses it, so the code outside the
with-block won’t see it.

start()
Start the Timeout object.

cancel()
Prevent the Timeout from raising, if hasn’t done so yet.

Futures

This module implements an (almost) API compatible concurrent.futures implementation which is cooperative.

class evergreen.futures.Future
The Future class encapsulates the asynchronous execution of a callable. Future instances are created by Execu-
tor.submit().

cancel()
Attempt to cancel the call. If the call is currently being executed and cannot be cancelled then the method
will return False, otherwise the call will be cancelled and the method will return True.

cancelled
Return True if the call was successfully cancelled.

done
Return True if the call was successfully cancelled or finished running.

get(timeout=None)
Return the value returned by the call. If the call hasn’t yet completed then this method will wait up to
timeout seconds. If the call hasn’t completed in timeout seconds, then a TimeoutError will be raised.
timeout can be an int or float. If timeout is not specified or None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised, this method will raise the same exception.

add_done_callback(func)
Attaches the callable func to the future. func will be called, with the future as its only argument, when the
future is cancelled or finishes running.

Added callables are called in the order that they were added and are always called in a thread belonging to
the process that added them. If the callable raises a Exception subclass, it will be logged and ignored. If
the callable raises a BaseException subclass, the behavior is undefined.

If the future has already completed or been cancelled, func will be called immediately.

class evergreen.futures.Executor
An abstract class that provides methods to execute calls asynchronously. It should not be used directly, but
through its concrete subclasses.

14 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

submit(fn, *args, **kwargs)
Schedules the callable, fn, to be executed as fn(*args **kwargs) and returns a Future object
representing the execution of the callable.

with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(pow, 323, 1235)
print(future.result())

map(func, *iterables, timeout=None)
Equivalent to map(func, *iterables) except func is executed asynchronously and several calls to
func may be made concurrently. The returned iterator raises a TimeoutError if __next__() is called
and the result isn’t available after timeout seconds from the original call to Executor.map(). timeout
can be an int or a float. If timeout is not specified or None, there is no limit to the wait time. If a call raises
an exception, then that exception will be raised when its value is retrieved from the iterator.

shutdown(wait=True)
Signal the executor that it should free any resources that it is using when the currently pending futures
are done executing. Calls to Executor.submit() and Executor.map() made after shutdown will
raise RuntimeError.

If wait is True then this method will not return until all the pending futures are done executing and the
resources associated with the executor have been freed. If wait is False then this method will return
immediately and the resources associated with the executor will be freed when all pending futures are
done executing. Regardless of the value of wait, the entire Python program will not exit until all pending
futures are done executing.

You can avoid having to call this method explicitly if you use the with statement, which will shutdown the
Executor (waiting as if Executor.shutdown() were called with wait set to True)

import shutil
with ThreadPoolExecutor(max_workers=4) as e:

e.submit(shutil.copy, ’src1.txt’, ’dest1.txt’)
e.submit(shutil.copy, ’src2.txt’, ’dest2.txt’)
e.submit(shutil.copy, ’src3.txt’, ’dest3.txt’)
e.submit(shutil.copy, ’src3.txt’, ’dest4.txt’)

class evergreen.futures.TaskPoolExecutor(max_workers)
An Executor subclass that uses a pool of at most max_workers tasks to execute calls concurrently.

class evergreen.futures.ThreadPoolExecutor(max_workers)
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

evergreen.futures.wait(fs, timeout=None, return_when=ALL_COMPLETED)
Wait for the Future instances (possibly created by different Executor instances) given by fs to complete.
Returns a named 2-tuple of sets. The first set, named done, contains the futures that completed (finished or
were cancelled) before the wait completed. The second set, named not_done, contains uncompleted futures.

timeout can be used to control the maximum number of seconds to wait before returning. timeout can be an int
or float. If timeout is not specified or None, there is no limit to the wait time.

return_when indicates when this function should return. It must be one of the following constants:

Constant Description
FIRST_COMPLETEDThe function will return when any future finishes or is cancelled.
FIRST_EXCEPTIONThe function will return when any future finishes by raising an exception. If no future

raises an exception then it is equivalent to ALL_COMPLETED.
ALL_COMPLETEDThe function will return when all futures finish or are cancelled.

evergreen.futures.as_completed()
Returns an iterator over the Future instances (possibly created by different Executor instances) given

3.2. API documentation 15

evergreen Documentation, Release 0.2.0

by fs that yields futures as they complete (finished or were cancelled). Any futures that completed be-
fore as_completed() is called will be yielded first. The returned iterator raises a TimeoutError
if __next__() is called and the result isn’t available after timeout seconds from the original call to
as_completed(). timeout can be an int or float. If timeout is not specified or None, there is no limit
to the wait time.

Exceptions

exception evergreen.futures.CancelledError

exception evergreen.futures.TimeoutError

Future class API changes

The future class in this module doesn’t conform 100% to the API exposed by the equivalent class in the concur-
rent.futures module from the standard library, though they are pretty minor. Here is the list of changes:

• cancelled and done are properties, not functions

• result function is called get

• there is no exception function

• there is no running function

• futures can only be used once, after the result (or exception) is fetched from a future, it will raise
RuntimeError if get() is called again on it

I/O utilities

The io module provides utility classes for writing cooperative servers and clients in an easy way.

Note: This module is still quite experimental, API changes are expected.

class evergreen.io.BaseStream
Basic class for defining a stream-like transport.

closed
Returns True if the stream is closed, False otherwise. Once the stream is closed an exception will be raised
if any operation is attempted.

read_bytes(nbytes)
Read the specified amount of bytes (at most) from the stream.

read_until(delimiter)
Read until the specified delimiter is found.

read_until_regex(regex)
Read until the given regular expression is matched.

write(data)
Write data on the stream. Return True if data was flushed to the underlying resource and False in case the
data was buffered and will be sent later.

shutdown()
Close the write side of a stream and flush the pending data.

16 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

close()
Close the stream. All further operations will raise an exception. Any buffered data will be lost.

_set_connected()
This method is part of the internal API. It sets the stream state to connected. Before a stream is connected
all write operations will be buffered and flushed once the stream is connected.

class evergreen.io.StreamServer
Base class for writing servers which use a stream-like transport.

bind(address)
Bind the server to the specified address. The address will be different depending on the particular server
implementation.

serve([backlog])
Start listening for incoming connections. The caller will block until the server is stopped with a call to
close.

close()
Close the server. All active connections are also closed.

handle_connection(connection)
Abstract method which subclasses need to implement in order handle incoming connections.

connections
List of currently active connections.

class evergreen.io.StreamConnection
Base class representing a connection handled by a StreamServer.

server
Reference to the StreamServer which accepted the connection.

close()
Close the connection.

_set_accepted(server)
Internal API method: sets the connection state to accepted.

exception evergreen.io.StreamError
Base class for stream related errors.

class evergreen.io.TCPClient
Class representing a TCP client.

sockname
Returns the local address.

peername
Returns the remote endpoint’s address.

connect(target[, source_address])
Start an outgoing connection towards the specified target. If source_address is specified the socket will be
bound to it, else the system will pick an appropriate one.

class evergreen.io.TCPServer
Class representing a TCP server.

sockname
Returns the local address where the server is listening.

class evergreen.io.TCPConnection
Class representing a TCP connection handled by a TCP server.

3.2. API documentation 17

evergreen Documentation, Release 0.2.0

sockname
Returns the local address.

peername
Returns the remote endpoint’s address.

exception evergreen.io.TCPError
Class for representing all TCP related errors.

class evergreen.io.PipeClient
Class representing a named pipe client.

connect(target)
Connects to the specified named pipe.

class evergreen.io.PipeServer
Class representing a named pipe server.

pipename
Returns the name of the pipe to which the server is bound.

class evergreen.io.PipeConnection
Class representing a connection to a named pipe server.

open(fd)
Opens the given file descriptor (or Windows HANDLE) and allows for using it as a regular pipe stream.

class evergreen.io.PipeStream
Class representing generic pipe stream. Currently it can only be used to open an arbitrary file descriptor such as
/dev/net/tun and treat it as a pipe stream.

exception evergreen.io.PipeError
Class for representing all Pipe related errors.

class evergreen.io.TTYStream(fd, readable)
Class representing a TTY stream. The specified fd is opened as a TTY, so make sure it’s already a TTY. If you
plan on reading from this stream specify readable as True.

winsize
Returns the current window size.

set_raw_mode(enable)
If set to True, sets this TTY handle in raw mode.

class evergreen.io.StdinStream
Convenience class to use stdin as a cooperative stream.

class evergreen.io.StdoutStream
Convenience class to use stdout as a cooperative stream.

class evergreen.io.StderrStream
Convenience class to use stderr as a cooperative stream.

exception evergreen.io.TTYError
Class for representing all TTY related errors.

class evergreen.io.UDPEndpoint
Class representing a UDP endpoint. UDP endpoints can be both servers and clients.

exception evergreen.io.UDPError
Class for representing all UDP related errors.

sockname
Returns the local address.

18 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

bind(address)
Bind the endpoint to the specified IPv4 or IPv6 address.

send(data, address)
Write data to the specified address.

receive()
Wait for incoming data. The return value is a tuple consisting of the received data and the source IP address
where it was received from.

close()
Close the stream. All further operations will raise an exception.

errno.errorcode()
Mapping between errno codes and their names.

errno.strerror(errorno)
Returns error string representation.

errno.EXXX
All error number constants are defined in the errno submodule.

Monkeypatching support

Evergreen supports monkeypatching certain modules to make them cooperative. By monkeypatching, some modules
which block are replaced with API compatible versions which cooperatively yield.

While evergreen doesn’t encourage this practice, because it leads to unexpected behavior depending on how modules
are used, limited support is provided for some common modules:

• socket

• select

• time

This module provides several functions to monkeypatch modules.

evergreen.patcher.patch(**modules)
Globally patches the given modules to make them cooperative. Example:

import evergreen.patcher

patcher.patch(socket=True, select=True, time=True)

evergreen.patcher.is_patched(module)
Returns true if the given module is currently monkeypatched, false otherwise. Module can be either the module
object or its name.

evergreen.patcher.import_patched(module, **additional_modules)
Imports a module and ensures that it uses the cooperative versions of the specified modules, or all of the sup-
ported ones in case no additional_modules is supplied. Example:

import evergreen.patcher

SocketServer = patcher.import_patched(’SocketServer’)

evergreen.patcher.original(module)
Returns an un-patched version of a module.

3.2. API documentation 19

evergreen Documentation, Release 0.2.0

Extending evergreen

evergreen provides a friendly way to import extensions that users may implement. This mechanism has been borrowed
from Flask :-)

There are no rules in how modules should be named, but if your module happens to be named evergreen-foo you can
import the module like this

from evergreen.ext import foo

instead of doing

import evergreen_foo

Standard library compatible cooperative modules

This module contains several API compatible and cooperative modules with some standard Python library modules.

Only a subset of those is provided, and it’s not evergreen’s intention to eventually provide alternatives to every module
in the standard library.

Provided modules:

• socket

• select

• time

from evergreen.lib import socket

use the socket as it was a ’normal’ one
...

3.3 Examples

3.3.1 Crawler

A cooperative i/o library wouldn’t be such without a “crawler” example:

from evergreen import futures, patcher
urllib2 = patcher.import_patched(’urllib2’)

urls = ["http://google.com",
"http://yahoo.com",
"http://bing.com"]

def fetch(url):
return urllib2.urlopen(url).read()

executor = futures.TaskPoolExecutor(100)
for body in executor.map(fetch, urls):

print("got body {}".format(len(body)))

20 Chapter 3. Documentation

evergreen Documentation, Release 0.2.0

3.3.2 Echo server

import sys

import evergreen
from evergreen.io import tcp

loop = evergreen.EventLoop()

class EchoServer(tcp.TCPServer):

@evergreen.task
def handle_connection(self, connection):

print(’client connected from {}’.format(connection.peername))
while True:

data = connection.read_until(’\n’)
if not data:

break
connection.write(data)

print(’connection closed’)

def main():
server = EchoServer()
port = int(sys.argv[1] if len(sys.argv) > 1 else 1234)
server.bind((’0.0.0.0’, port))
print (’listening on {}’.format(server.sockname))
server.serve()

evergreen.spawn(main)
loop.run()

3.3. Examples 21

evergreen Documentation, Release 0.2.0

22 Chapter 3. Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

23

evergreen Documentation, Release 0.2.0

24 Chapter 4. Indices and tables

Python Module Index

e
evergreen, ??
evergreen.channel, ??
evergreen.event, ??
evergreen.ext, ??
evergreen.futures, ??
evergreen.io, ??
evergreen.lib, ??
evergreen.local, ??
evergreen.locks, ??
evergreen.loop, ??
evergreen.patcher, ??
evergreen.queue, ??
evergreen.tasks, ??
evergreen.timeout, ??

25

