

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Evergreen 0.2.0 documentation

Evergreen: cooperative i/o and multitasking for Python

Overview

Evergreen is a Python library to help you write multitasking and I/O driven
applications in a cooperative way. Unlike when using threads, where the
execution model is preemptive and thus not controlled by you, using a
cooperative model allows you to choose what runs and when.
Evergreen will make this easier.

Features

	Cooperative multitasking abstractions similar to threads

	Multiple synchronization primitives

	Event loop driven scheduler

	Non-blocking I/O

	Convenience APIs for writing network server software

	Cooperative concurrent.futures style APIs

	Cooperative versions of certain standard library modules

	As little magic as possible

Documentation

	Design

	API documentation
	The Event Loop

	Task: a cooperative thread

	Synchronization primitives: Channel

	Synchronization primitives: Event

	Synchronization primitives: locks

	Synchronization primitives: queues

	Task local storage

	Managing timeouts

	Futures

	I/O utilities

	Monkeypatching support

	Extending evergreen

	Standard library compatible cooperative modules

	Examples

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

Design

The following sections contain an explanation of the design of the
different parts that compose evergreen. Evergreen was inspired by similar
libraries such as Gevent and Eventlet, but some of the key ideas
are different:

	Limit the amount of ‘magic’ to the minimum possible

	Cooperative tasks should look like threads

	APIs for dealing with tasks should mimic those used
in threading

	Task scheduling has to be predictable and consistent,
but without being exposed to the user

	The event loop (or hub or reactor) is a first class citizen
and it’s not hidden

Event loop

The event loop can be considered the central point of evergreen, it deals with timers,
I/O and task scheduling (described later). The event loop API is heavily inspired
by PEP 3156, so it’s possible that in the future the event loop implementation evergreen
uses can be replaced. At the moment evergreen uses puyv [https://github.com/saghul/pyuv]
as the underlying event loop.

In evergreen only one loop may exist per thread, and it has to be manually created for threads
other than the main thread. This would be the structure of a normal program using evergreen:

import evergreen

Create the global loop
loop = evergreen.EventLoop()

Setup tasks
...

Start the loop
loop.run()

No tasks will start working until loop.run is called unless a blocking operation is performed,
in which case the loop is automatically started. For long running processes such as servers, it’s
advised to explicitly create the event loop, setup tasks and manually run it. Small scripts can
rely on the fact that the main thread’s loop is automatically created and run when an opperation
cooperatively blocks.

Tasks

The cooperative task abstraction provided by evergreen (through the Task class).
The public API for this class mimics that of a threading.Thread thread, but it’s
scheduled cooperatively.

Tasks are implemented using the fibers [https://github.com/saghul/python-fibers] library.

Here are some ‘rules’ that apply to tasks:

	Tasks don’t yield control to each other, they must always yield control to the loop,
or schedule a switch to the desired task in the loop, this ensures predictable
execution order and fairness.

	In order to exchange values between tasks any of the provided synchronization
primitives should be used, the tasks themselves don’t provide any means to do it.

Scheduling

The scheduler has no public interface. You interact with it by switching execution to the loop.
In fact, there is no single object representing the scheduler, its behavior is implemented by the
Task, Future and other classes using only the public interface of the event loop.

The easiest way to suspend the execution of the current task and yield control to the loop so that
other tasks can run is to use:

evergreen.sleep(0)

The only functions that suspend the current task are those which ‘block’, for example lock or
socket functions.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

API documentation

Documentation for the modules composing the public API for Evergreen.

Modules

	The Event Loop

	Task: a cooperative thread

	Synchronization primitives: Channel

	Synchronization primitives: Event

	Synchronization primitives: locks

	Synchronization primitives: queues

	Task local storage

	Managing timeouts

	Futures

	I/O utilities

	Monkeypatching support

	Extending evergreen

	Standard library compatible cooperative modules

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

The Event Loop

The event loop is the main entity in evergreen, together with tasks. It takes care of running
all scheduled operations and provides time based callback scheduling as well as I/O readyness
based callback scheduling.

	
class evergreen.loop.EventLoop

	This is the main class that sets things in motion in evergreen. I runs scheduled tasks,
timers and I/O operations. Only one event loop may exist per thread and it needs to be
explicitly created for threads other than the main thread.
The current loop can be accessed with evergreen.current.loop.

	
classmethod current()

	Returns the event loop instance running in the current thread.

	
call_soon(callback, *args, **kw)

	Schedule the given callback to be called as soon as possible. Returns a Handler
object which can be used to cancel the callback.

	
call_from_thread(callback, *args, **kw)

	Schedule the given callback to be called by the loop thread. This is the
only thread-safe function on the loop. Returns a Handler
object which can be used to cancel the callback.

	
call_later(delay, callback, *args, **kw)

	Schedule the given callback to be called after the given amount
of time. Returns a Handler object which can be used to cancel the callback.

	
call_at(when, callback, *args, **kw)

	Schedule the given callback to be called at the given time. Returns a Handler object
which can be used to cancel the callback.

	
time()

	Returns the current time.

	
add_reader(fd, callback, *args, **kw)

	Create a handler which will call the given callback when the given
file descriptor is ready for reading.

	
remove_reader(fd)

	Remove the read handler for the given file descriptor.

	
add_writer(fd, callback, *args, **kw)

	Create a handler which will call the given callback when the given
file descriptor is ready for writing.

	
remove_writer(fd)

	Remove the write handler for the given file descriptor.

	
add_signal_handler(signum, callback, *args, **kw)

	Create a handler which will run the given callback when the specified
signal is captured. Multiple handlers for the same signal can be added.
If the handler is cancelled, only that particular handler is removed.

	
remove_signal_handler(signum)

	Remove all handlers for the specified signal.

	
switch()

	Switch task execution to the loop’s main task. If the loop wasn’t started yet
it will be started at this point.

	
run()

	Start running the event loop. It will be automatically stopped when
there are no more scheduled tasks or callbacks to run.

Note

Once the loop has been stopped it cannot be started again.

	
run_forever()

	Similar to run but it will not stop be stopped automatically even if
all tasks are finished. The loop will be stopped when stop() is called.
Useful for long running processes such as servers.

	
stop()

	Stop the event loop.

	
destroy()

	Free all resources associated with an event loop. The thread local
storage is also emptied, so after destroying a loop a new one can be created
on the same thread.

	
class evergreen.loop.Handler

	This is an internal class which is returned by many of the EventLoop
methods and provides a way to cancel scheduled callbacks.

Note

This class should not be instantiated by user applications, the loop
itself uses it to wrap callbacks and return it to the user.

	
cancel()

	Cancels the handle, preventing its callback from being executed,
if it wasn’t executed yet.

Warning

Like every API method other than EventLoop.call_from_thread, this
function is not thread safe, it must be called from the event loop
thread.

Finding the ‘current loop’

evergreen provides a convenience mechanism to get a reference to the loop
running in the current thread:

current_loop = evergreen.current.loop

If a loop was not explicitly created in the current thread RuntimeError
is raised.

Handling signals

While the signal module works just fine, it’s better to use the signal handling
functions provided by the EventLoop. It allows adding multiple handlers for the
same signal, from different threads and the handlers are called in the appropriate
thread (where they were added from).

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Task: a cooperative thread

The tasks module provides one of the most important pieces of evergreen, the Task
class along with some utility functions. The Task class encapsulates a unit
of cooperative work and it has an API which is very similar to the Thread class
in the standard library.

	
evergreen.tasks.sleep(seconds)

	Suspend the current task until the given amount of time has elapsed.

	
evergreen.tasks.spawn(func, *args, **kwargs)

	Create a Task object to run func(*args, **kwargs) and start it.
Returns the Task object.

	
evergreen.tasks.task()

	Decorator to run the decorated function in a Task.

	
class evergreen.tasks.Task(target=None, args=(), kwargs={})

	Runs the given target function with the specified arguments as a cooperative
task.

	
classmethod current()

	Returns the current running task instance.

	
start()

	Schedules the task to be run.

	
run()

	Main method the task will execute. Subclasses may want to override this method
instead of passing arguments to __init__.

	
join(timeout=None)

	Wait until the task finishes for the given amount of time. Returns a boolean flag
indicating if the task finished the work or not.

	
kill(typ=TaskExit[, value[, tb]])

	Raises the given exception (TaskExit by default) in the task. If the task wasn’t
run yet it will be raised the moment it runs. If the task was already running, it will
be raised when it yields control.

Calling this function doesn’t unschedule the current task.

	
exception evergreen.tasks.TaskExit

	Exception used to kill a single task. It does not propagate.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Synchronization primitives: Channel

Channels are the simplest mechanism for 2 tasks to exchange data.

	
class evergreen.channel.Channel

	A synchronous communication pipe between 2 tasks.

	
send(data)

	Send data over the channel. The calling task will be blocked if
there is no task waiting for the data on the other side.

	
send_exception(exc_type, exc_value=None, exc_tb=None)

	Send the given exception. It will be raised on the receiving task.

	
receive()

	Wait for data to arrive on the channel.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Synchronization primitives: Event

This is one of the simplest mechanisms for communication between tasks: one
task signals an event and other threads wait for it.

	
class evergreen.event.Event

	This class implements a cooperative version of threading.Event.

	
is_set()

	Returns True if the flag is set, False otherwise.

	
set()

	Set the internal flag to true. All tasks waiting for it to become true are awakened.
Tasks that call wait() once the flag is true will not block at all.

	
clear()

	Reset the internal flag to false. Subsequently, tasks calling wait() will block
until set() is called to set the internal flag to true again.

	
wait([timeout])

	Block until the internal flag is true. If the internal flag is true on entry,
return immediately. Otherwise, block until another task calls set() to set the
flag to true, or until the optional timeout occurs. The internal flag is returned
on exit.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Synchronization primitives: locks

This module implements synchronization primitives to be used with cooperative tasks,
in an analogous and API compatible way as threading module’s primitives which are
used with threads.

	
class evergreen.locks.Semaphore([value])

	A semaphore manages an internal counter which is decremented by each
acquire() call and incremented by each release() call. The counter
can never go below zero; when acquire() finds that it is zero, it blocks,
waiting until some other task calls release().

The optional argument gives the initial value for the internal counter; it
defaults to 1. If the value given is less than 0, ValueError is
raised.

	
acquire([blocking])

	Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than
zero on entry, decrement it by one and return immediately. If it is zero
on entry, block, waiting until some other task has called
release() to make it larger than zero. This is done with proper
interlocking so that if multiple acquire() calls are blocked,
release() will wake exactly one of them up. The implementation may
pick one at random, so the order in which blocked tasks are awakened
should not be relied on. Returns true (or blocks indefinitely).

When invoked with blocking set to false, do not block. If a call
without an argument would block, return false immediately; otherwise, do
the same thing as when called without arguments, and return true.

When invoked with a timeout other than None, it will block for at
most timeout seconds. If acquire does not complete successfully in
that interval, return false. Return true otherwise.

	
release()

	Release a semaphore, incrementing the internal counter by one. When it
was zero on entry and another task is waiting for it to become larger
than zero again, wake up that task.

	
class evergreen.locks.BoundedSemaphore([value])

	Class implementing bounded semaphore objects. A bounded semaphore checks to
make sure its current value doesn’t exceed its initial value. If it does,
ValueError is raised. In most situations semaphores are used to guard
resources with limited capacity. If the semaphore is released too many times
it’s a sign of a bug. If not given, value defaults to 1.

	
class evergreen.locks.RLock

	This class implements reentrant lock objects. A reentrant lock must be
released by the task that acquired it. Once a task has acquired a
reentrant lock, the same task may acquire it again without blocking; the
task must release it once for each time it has acquired it.

	
acquire(blocking=True, timeout=None)

	Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this task already owns the lock, increment
the recursion level by one, and return immediately. Otherwise, if another
task owns the lock, block until the lock is unlocked. Once the lock is
unlocked (not owned by any task), then grab ownership, set the recursion level
to one, and return. If more than one task is blocked waiting until the lock
is unlocked, only one at a time will be able to grab ownership of the lock.
There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when
called without arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call
without an argument would block, return false immediately; otherwise, do the
same thing as when called without arguments, and return true.

When invoked with the floating-point timeout argument set to a positive
value, block for at most the number of seconds specified by timeout
and as long as the lock cannot be acquired. Return true if the lock has
been acquired, false if the timeout has elapsed.

	
release()

	Release a lock, decrementing the recursion level. If after the decrement it is
zero, reset the lock to unlocked (not owned by any task), and if any other
tasks are blocked waiting for the lock to become unlocked, allow exactly one
of them to proceed. If after the decrement the recursion level is still
nonzero, the lock remains locked and owned by the calling task.

Only call this method when the calling task owns the lock. A
RuntimeError is raised if this method is called when the lock is
unlocked.

There is no return value.

	
class evergreen.locks.Condition(lock=None)

	This class implements condition variable objects. A condition variable
allows one or more tasks to wait until they are notified by another task.

If the lock argument is given and not None, it must be a Semaphore
or RLock object, and it is used as the underlying lock. Otherwise,
a new RLock object is created and used as the underlying lock.

	
acquire(*args)

	Acquire the underlying lock. This method calls the corresponding method on
the underlying lock; the return value is whatever that method returns.

	
release()

	Release the underlying lock. This method calls the corresponding method on
the underlying lock; there is no return value.

	
wait(timeout=None)

	Wait until notified or until a timeout occurs. If the calling task has
not acquired the lock when this method is called, a RuntimeError is
raised.

This method releases the underlying lock, and then blocks until it is
awakened by a notify() or notify_all() call for the same
condition variable in another task, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

When the underlying lock is an RLock, it is not released using
its release() method, since this may not actually unlock the lock
when it was acquired multiple times recursively. Instead, an internal
interface of the RLock class is used, which really unlocks it
even when it has been recursively acquired several times. Another internal
interface is then used to restore the recursion level when the lock is
reacquired.

The return value is True unless a given timeout expired, in which
case it is False.

	
notify(n=1)

	By default, wake up one task waiting on this condition, if any. If the
calling task has not acquired the lock when this method is called, a
RuntimeError is raised.

This method wakes up at most n of the tasks waiting for the condition
variable; it is a no-op if no tasks are waiting.

The current implementation wakes up exactly n tasks, if at least n
tasks are waiting. However, it’s not safe to rely on this behavior.
A future, optimized implementation may occasionally wake up more than
n tasks.

Note: an awakened task does not actually return from its wait()
call until it can reacquire the lock. Since notify() does not
release the lock, its caller should.

	
notify_all()

	Wake up all tasks waiting on this condition. This method acts like
notify(), but wakes up all waiting tasks instead of one. If the
calling task has not acquired the lock when this method is called, a
RuntimeError is raised.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Synchronization primitives: queues

The queue module implements multi-producer, multi-consumer queues, useful for
exchanging data between tasks.

This module implements API compatible cooperative versions of the different
queue implementations that can be found in the Python standard library.

The module implements three types of queue, which differ only in the order in
which the entries are retrieved. In a FIFO queue, the first tasks added are
the first retrieved. In a LIFO queue, the most recently added entry is
the first retrieved (operating like a stack). With a priority queue,
the entries are kept sorted (using the heapq module) and the
lowest valued entry is retrieved first.

	
class evergreen.queue.Queue(maxsize)

	Constructor for a FIFO queue. maxsize is an integer that sets the upper
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

	
class evergreen.queue.PriorityQueue(maxsize)

	Constructor for a LIFO queue. maxsize is an integer that sets the upper
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

	
class evergreen.queue.LifoQueue(maxsize)

	Constructor for a priority queue. maxsize is an integer that sets the upper
limit on the number of items that can be placed in the queue. Insertion will
block once this size has been reached, until queue items are consumed. If
maxsize is less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the
one returned by sorted(list(entries))[0]). A typical pattern for entries
is a tuple in the form: (priority_number, data).

Queue Objects

Queue objects (Queue, LifoQueue, or PriorityQueue)
provide the public methods described below.

	
Queue.qsize()

	Return the approximate size of the queue. Note, qsize() > 0 doesn’t
guarantee that a subsequent get() will not block, nor will qsize() < maxsize
guarantee that put() will not block.

	
Queue.empty()

	Return True if the queue is empty, False otherwise. If empty()
returns True it doesn’t guarantee that a subsequent call to put()
will not block. Similarly, if empty() returns False it doesn’t
guarantee that a subsequent call to get() will not block.

	
Queue.full()

	Return True if the queue is full, False otherwise. If full()
returns True it doesn’t guarantee that a subsequent call to get()
will not block. Similarly, if full() returns False it doesn’t
guarantee that a subsequent call to put() will not block.

	
Queue.put(item[, block[, timeout]])

	Put item into the queue. If optional args block is true and timeout is
None (the default), block if necessary until a free slot is available. If
timeout is a positive number, it blocks at most timeout seconds and raises
the Full exception if no free slot was available within that time.
Otherwise (block is false), put an item on the queue if a free slot is
immediately available, else raise the Full exception (timeout is
ignored in that case).

	
Queue.put_nowait(item)

	Equivalent to put(item, False).

	
Queue.get([block[, timeout]])

	Remove and return an item from the queue. If optional args block is true and
timeout is None (the default), block if necessary until an item is available.
If timeout is a positive number, it blocks at most timeout seconds and
raises the Empty exception if no item was available within that time.
Otherwise (block is false), return an item if one is immediately available,
else raise the Empty exception (timeout is ignored in that case).

	
Queue.get_nowait()

	Equivalent to get(False).

Two methods are offered to support tracking whether enqueued tasks have been
fully processed by daemon consumer tasks.

	
Queue.task_done()

	Indicate that a formerly enqueued task is complete. Used by queue consumer
tasks. For each get() used to fetch a task, a subsequent call to
task_done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been
processed (meaning that a task_done() call was received for every item
that had been put() into the queue).

Raises a ValueError if called more times than there were items placed in
the queue.

	
Queue.join()

	Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue.
The count goes down whenever a consumer task calls task_done() to
indicate that the item was retrieved and all work on it is complete. When the
count of unfinished tasks drops to zero, join() unblocks.

Example of how to wait for enqueued tasks to be completed

def worker():
 while True:
 item = q.get()
 do_work(item)
 q.task_done()

q = Queue()
for i in range(num_worker_tasks):
 t = Task(target=worker)
 t.start()

for item in source():
 q.put(item)
q.join() # block until all tasks are done

Exceptions

	
exception evergreen.queue.Empty

	Exception raised when non-blocking get() (or get_nowait()) is called
on a Queue object which is empty.

	
exception evergreen.queue.Full

	Exception raised when non-blocking put() (or put_nowait()) is called
on a Queue object which is full.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Task local storage

This module provides the equivalent to threading.local but applying
the concept to tasks.

	
class evergreen.local.local

	A class that represents task-local data. Task-local data are data whose
values are task specific. To manage task-local data, just create an
instance of local (or a subclass) and store attributes on it

mydata = local()
mydata.x = 1

The instance’s values will be different for separate tasks.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Managing timeouts

Timeout objects allow to stop a task after a given amount of time. This
is useful to abort a network connection if the response is taking
too long to arrive, for example.

	
class evergreen.timeout.Timeout([seconds[, exception]])

	Raises exception in the current task after timeout seconds.

When exception is omitted or None, the Timeout instance
itself is raised. If seconds is None or < 0, the timer is not scheduled, and is
only useful if you’re planning to raise it directly.

Timeout objects are context managers, and so can be used in with statements.
When used in a with statement, if exception is False, the timeout is
still raised, but the context manager suppresses it, so the code outside the
with-block won’t see it.

	
start()

	Start the Timeout object.

	
cancel()

	Prevent the Timeout from raising, if hasn’t done so yet.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Futures

This module implements an (almost) API compatible concurrent.futures implementation
which is cooperative.

	
class evergreen.futures.Future

	The Future class encapsulates the asynchronous execution of a callable. Future
instances are created by Executor.submit().

	
cancel()

	Attempt to cancel the call. If the call is currently being executed and cannot
be cancelled then the method will return False, otherwise the call will be cancelled
and the method will return True.

	
cancelled

	Return True if the call was successfully cancelled.

	
done

	Return True if the call was successfully cancelled or finished running.

	
get(timeout=None)

	Return the value returned by the call. If the call hasn’t yet completed then
this method will wait up to timeout seconds. If the call hasn’t completed in
timeout seconds, then a TimeoutError will be raised. timeout can be an int or
float. If timeout is not specified or None, there is no limit to the wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised, this method will raise the same exception.

	
add_done_callback(func)

	Attaches the callable func to the future. func will be called, with the future as
its only argument, when the future is cancelled or finishes running.

Added callables are called in the order that they were added and are always called
in a thread belonging to the process that added them. If the callable raises a
Exception subclass, it will be logged and ignored. If the callable raises a BaseException
subclass, the behavior is undefined.

If the future has already completed or been cancelled, func will be called immediately.

	
class evergreen.futures.Executor

	An abstract class that provides methods to execute calls asynchronously. It
should not be used directly, but through its concrete subclasses.

	
submit(fn, *args, **kwargs)

	Schedules the callable, fn, to be executed as fn(*args **kwargs)
and returns a Future object representing the execution of the
callable.

with ThreadPoolExecutor(max_workers=1) as executor:
 future = executor.submit(pow, 323, 1235)
 print(future.result())

	
map(func, *iterables, timeout=None)

	Equivalent to map(func, *iterables) except func is executed
asynchronously and several calls to func may be made concurrently. The
returned iterator raises a TimeoutError if
__next__() is called and the result isn’t available
after timeout seconds from the original call to Executor.map().
timeout can be an int or a float. If timeout is not specified or
None, there is no limit to the wait time. If a call raises an
exception, then that exception will be raised when its value is
retrieved from the iterator.

	
shutdown(wait=True)

	Signal the executor that it should free any resources that it is using
when the currently pending futures are done executing. Calls to
Executor.submit() and Executor.map() made after shutdown will
raise RuntimeError.

If wait is True then this method will not return until all the
pending futures are done executing and the resources associated with the
executor have been freed. If wait is False then this method will
return immediately and the resources associated with the executor will be
freed when all pending futures are done executing. Regardless of the
value of wait, the entire Python program will not exit until all
pending futures are done executing.

You can avoid having to call this method explicitly if you use the
with statement, which will shutdown the Executor
(waiting as if Executor.shutdown() were called with wait set to True)

import shutil
with ThreadPoolExecutor(max_workers=4) as e:
 e.submit(shutil.copy, 'src1.txt', 'dest1.txt')
 e.submit(shutil.copy, 'src2.txt', 'dest2.txt')
 e.submit(shutil.copy, 'src3.txt', 'dest3.txt')
 e.submit(shutil.copy, 'src3.txt', 'dest4.txt')

	
class evergreen.futures.TaskPoolExecutor(max_workers)

	An Executor subclass that uses a pool of at most max_workers tasks to execute
calls concurrently.

	
class evergreen.futures.ThreadPoolExecutor(max_workers)

	An Executor subclass that uses a pool of at most max_workers threads to execute
calls asynchronously.

	
evergreen.futures.wait(fs, timeout=None, return_when=ALL_COMPLETED)

	Wait for the Future instances (possibly created by different
Executor instances) given by fs to complete. Returns a named
2-tuple of sets. The first set, named done, contains the futures that
completed (finished or were cancelled) before the wait completed. The second
set, named not_done, contains uncompleted futures.

timeout can be used to control the maximum number of seconds to wait before
returning. timeout can be an int or float. If timeout is not specified
or None, there is no limit to the wait time.

return_when indicates when this function should return. It must be one of
the following constants:

	Constant
	Description

	FIRST_COMPLETED
	The function will return when any
future finishes or is cancelled.

	FIRST_EXCEPTION
	The function will return when any
future finishes by raising an
exception. If no future raises an
exception then it is equivalent to
ALL_COMPLETED.

	ALL_COMPLETED
	The function will return when all
futures finish or are cancelled.

	
evergreen.futures.as_completed()

	Returns an iterator over the Future instances (possibly created by
different Executor instances) given by fs that yields futures as
they complete (finished or were cancelled). Any futures that completed
before as_completed() is called will be yielded first. The returned
iterator raises a TimeoutError if __next__() is
called and the result isn’t available after timeout seconds from the
original call to as_completed(). timeout can be an int or float.
If timeout is not specified or None, there is no limit to the wait
time.

Exceptions

	
exception evergreen.futures.CancelledError

	

	
exception evergreen.futures.TimeoutError

	

Future class API changes

The future class in this module doesn’t conform 100% to the API exposed
by the equivalent class in the concurrent.futures module from the
standard library, though they are pretty minor. Here is the list of changes:

	cancelled and done are properties, not functions

	result function is called get

	there is no exception function

	there is no running function

	futures can only be used once, after the result (or exception) is fetched
from a future, it will raise RuntimeError if get() is called
again on it

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

I/O utilities

The io module provides utility classes for writing cooperative servers and clients
in an easy way.

Note

This module is still quite experimental, API changes are expected.

	
class evergreen.io.BaseStream

	Basic class for defining a stream-like transport.

	
closed

	Returns True if the stream is closed, False otherwise. Once the stream is closed
an exception will be raised if any operation is attempted.

	
read_bytes(nbytes)

	Read the specified amount of bytes (at most) from the stream.

	
read_until(delimiter)

	Read until the specified delimiter is found.

	
read_until_regex(regex)

	Read until the given regular expression is matched.

	
write(data)

	Write data on the stream. Return True if data was flushed to the underlying resource
and False in case the data was buffered and will be sent later.

	
shutdown()

	Close the write side of a stream and flush the pending data.

	
close()

	Close the stream. All further operations will raise an exception. Any buffered data will
be lost.

	
_set_connected()

	This method is part of the internal API. It sets the stream state to connected. Before a
stream is connected all write operations will be buffered and flushed once the stream
is connected.

	
class evergreen.io.StreamServer

	Base class for writing servers which use a stream-like transport.

	
bind(address)

	Bind the server to the specified address. The address will be different depending on the
particular server implementation.

	
serve([backlog])

	Start listening for incoming connections. The caller will block until the server is stopped
with a call to close.

	
close()

	Close the server. All active connections are also closed.

	
handle_connection(connection)

	Abstract method which subclasses need to implement in order handle incoming connections.

	
connections

	List of currently active connections.

	
class evergreen.io.StreamConnection

	Base class representing a connection handled by a StreamServer.

	
server

	Reference to the StreamServer which accepted the connection.

	
close()

	Close the connection.

	
_set_accepted(server)

	Internal API method: sets the connection state to accepted.

	
exception evergreen.io.StreamError

	Base class for stream related errors.

	
class evergreen.io.TCPClient

	Class representing a TCP client.

	
sockname

	Returns the local address.

	
peername

	Returns the remote endpoint’s address.

	
connect(target[, source_address])

	Start an outgoing connection towards the specified target. If source_address is
specified the socket will be bound to it, else the system will pick an appropriate one.

	
class evergreen.io.TCPServer

	Class representing a TCP server.

	
sockname

	Returns the local address where the server is listening.

	
class evergreen.io.TCPConnection

	Class representing a TCP connection handled by a TCP server.

	
sockname

	Returns the local address.

	
peername

	Returns the remote endpoint’s address.

	
exception evergreen.io.TCPError

	Class for representing all TCP related errors.

	
class evergreen.io.PipeClient

	Class representing a named pipe client.

	
connect(target)

	Connects to the specified named pipe.

	
class evergreen.io.PipeServer

	Class representing a named pipe server.

	
pipename

	Returns the name of the pipe to which the server is bound.

	
class evergreen.io.PipeConnection

	Class representing a connection to a named pipe server.

	
open(fd)

	Opens the given file descriptor (or Windows HANDLE) and allows for using it as a
regular pipe stream.

	
class evergreen.io.PipeStream

	Class representing generic pipe stream. Currently it can only be used to open an arbitrary
file descriptor such as /dev/net/tun and treat it as a pipe stream.

	
exception evergreen.io.PipeError

	Class for representing all Pipe related errors.

	
class evergreen.io.TTYStream(fd, readable)

	Class representing a TTY stream. The specified fd is opened as a TTY, so make
sure it’s already a TTY. If you plan on reading from this stream specify readable as
True.

	
winsize

	Returns the current window size.

	
set_raw_mode(enable)

	If set to True, sets this TTY handle in raw mode.

	
class evergreen.io.StdinStream

	Convenience class to use stdin as a cooperative stream.

	
class evergreen.io.StdoutStream

	Convenience class to use stdout as a cooperative stream.

	
class evergreen.io.StderrStream

	Convenience class to use stderr as a cooperative stream.

	
exception evergreen.io.TTYError

	Class for representing all TTY related errors.

	
class evergreen.io.UDPEndpoint

	Class representing a UDP endpoint. UDP endpoints can be both servers
and clients.

	
exception evergreen.io.UDPError

	Class for representing all UDP related errors.

	
sockname

	Returns the local address.

	
bind(address)

	Bind the endpoint to the specified IPv4 or IPv6 address.

	
send(data, address)

	Write data to the specified address.

	
receive()

	Wait for incoming data. The return value is a tuple consisting of the received
data and the source IP address where it was received from.

	
close()

	Close the stream. All further operations will raise an exception.

	
errno.errorcode()

	Mapping between errno codes and their names.

	
errno.strerror(errorno)

	Returns error string representation.

	
errno.EXXX

	All error number constants are defined in the errno submodule.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Monkeypatching support

Evergreen supports monkeypatching certain modules to make them cooperative. By monkeypatching,
some modules which block are replaced with API compatible versions which cooperatively yield.

While evergreen doesn’t encourage this practice, because it leads to unexpected behavior depending
on how modules are used, limited support is provided for some common modules:

	socket

	select

	time

This module provides several functions to monkeypatch modules.

	
evergreen.patcher.patch(**modules)

	Globally patches the given modules to make them cooperative. Example:

import evergreen.patcher

patcher.patch(socket=True, select=True, time=True)

	
evergreen.patcher.is_patched(module)

	Returns true if the given module is currently monkeypatched, false otherwise.
Module can be either the module object or its name.

	
evergreen.patcher.import_patched(module, **additional_modules)

	Imports a module and ensures that it uses the cooperative versions of the specified
modules, or all of the supported ones in case no additional_modules is supplied.
Example:

import evergreen.patcher

SocketServer = patcher.import_patched('SocketServer')

	
evergreen.patcher.original(module)

	Returns an un-patched version of a module.

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Extending evergreen

evergreen provides a friendly way to import extensions that users may implement.
This mechanism has been borrowed from Flask :-)

There are no rules in how modules should be named, but if your module happens
to be named evergreen-foo you can import the module like this

from evergreen.ext import foo

instead of doing

import evergreen_foo

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Evergreen 0.2.0 documentation

 	API documentation

Standard library compatible cooperative modules

This module contains several API compatible and cooperative modules with some
standard Python library modules.

Only a subset of those is provided, and it’s not evergreen’s intention to eventually
provide alternatives to every module in the standard library.

Provided modules:

	socket

	select

	time

from evergreen.lib import socket

use the socket as it was a 'normal' one
...

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Evergreen 0.2.0 documentation

Examples

Crawler

A cooperative i/o library wouldn’t be such without a “crawler” example:

from evergreen import futures, patcher
urllib2 = patcher.import_patched('urllib2')

urls = ["http://google.com",
 "http://yahoo.com",
 "http://bing.com"]

def fetch(url):
 return urllib2.urlopen(url).read()

executor = futures.TaskPoolExecutor(100)
for body in executor.map(fetch, urls):
 print("got body {}".format(len(body)))

Echo server

import sys

import evergreen
from evergreen.io import tcp

loop = evergreen.EventLoop()

class EchoServer(tcp.TCPServer):

 @evergreen.task
 def handle_connection(self, connection):
 print('client connected from {}'.format(connection.peername))
 while True:
 data = connection.read_until('\n')
 if not data:
 break
 connection.write(data)
 print('connection closed')

def main():
 server = EchoServer()
 port = int(sys.argv[1] if len(sys.argv) > 1 else 1234)
 server.bind(('0.0.0.0', port))
 print ('listening on {}'.format(server.sockname))
 server.serve()

evergreen.spawn(main)
loop.run()

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	Evergreen 0.2.0 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 evergreen	

 	
 	
 evergreen.channel	

 	
 	
 evergreen.event	

 	
 	
 evergreen.ext	

 	
 	
 evergreen.futures	

 	
 	
 evergreen.io	

 	
 	
 evergreen.lib	

 	
 	
 evergreen.local	

 	
 	
 evergreen.locks	

 	
 	
 evergreen.loop	

 	
 	
 evergreen.patcher	

 	
 	
 evergreen.queue	

 	
 	
 evergreen.tasks	

 	
 	
 evergreen.timeout	

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	Evergreen 0.2.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

_

 	

 	_set_accepted() (evergreen.io.StreamConnection method)

 	

 	_set_connected() (evergreen.io.BaseStream method)

A

 	

 	acquire() (evergreen.locks.Condition method)

 	

 	(evergreen.locks.RLock method)

 	(evergreen.locks.Semaphore method)

 	add_done_callback() (evergreen.futures.Future method)

 	add_reader() (evergreen.loop.EventLoop method)

 	

 	add_signal_handler() (evergreen.loop.EventLoop method)

 	add_writer() (evergreen.loop.EventLoop method)

 	as_completed() (in module evergreen.futures)

B

 	

 	BaseStream (class in evergreen.io)

 	bind() (evergreen.io.StreamServer method)

 	

 	(evergreen.io.UDPError method)

 	

 	BoundedSemaphore (class in evergreen.locks)

C

 	

 	call_at() (evergreen.loop.EventLoop method)

 	call_from_thread() (evergreen.loop.EventLoop method)

 	call_later() (evergreen.loop.EventLoop method)

 	call_soon() (evergreen.loop.EventLoop method)

 	cancel() (evergreen.futures.Future method)

 	

 	(evergreen.loop.Handler method)

 	(evergreen.timeout.Timeout method)

 	cancelled (evergreen.futures.Future attribute)

 	CancelledError

 	Channel (class in evergreen.channel)

 	

 	clear() (evergreen.event.Event method)

 	close() (evergreen.io.BaseStream method)

 	

 	(evergreen.io.StreamConnection method)

 	(evergreen.io.StreamServer method)

 	(evergreen.io.UDPError method)

 	closed (evergreen.io.BaseStream attribute)

 	Condition (class in evergreen.locks)

 	connect() (evergreen.io.PipeClient method)

 	

 	(evergreen.io.TCPClient method)

 	connections (evergreen.io.StreamServer attribute)

 	current() (evergreen.loop.EventLoop class method)

 	

 	(evergreen.tasks.Task class method)

D

 	

 	destroy() (evergreen.loop.EventLoop method)

 	

 	done (evergreen.futures.Future attribute)

E

 	

 	Empty

 	empty() (evergreen.queue.Queue method)

 	errno.errorcode() (in module evergreen.io)

 	errno.EXXX (in module evergreen.io)

 	errno.strerror() (in module evergreen.io)

 	Event (class in evergreen.event)

 	EventLoop (class in evergreen.loop)

 	evergreen (module)

 	evergreen.channel (module)

 	evergreen.event (module)

 	evergreen.ext (module)

 	

 	evergreen.futures (module)

 	evergreen.io (module)

 	evergreen.lib (module)

 	evergreen.local (module)

 	evergreen.locks (module)

 	evergreen.loop (module)

 	evergreen.patcher (module)

 	evergreen.queue (module)

 	evergreen.tasks (module)

 	evergreen.timeout (module)

 	Executor (class in evergreen.futures)

F

 	

 	Full

 	full() (evergreen.queue.Queue method)

 	

 	Future (class in evergreen.futures)

G

 	

 	get() (evergreen.futures.Future method)

 	

 	(evergreen.queue.Queue method)

 	

 	get_nowait() (evergreen.queue.Queue method)

H

 	

 	handle_connection() (evergreen.io.StreamServer method)

 	

 	Handler (class in evergreen.loop)

I

 	

 	import_patched() (in module evergreen.patcher)

 	is_patched() (in module evergreen.patcher)

 	

 	is_set() (evergreen.event.Event method)

J

 	

 	join() (evergreen.queue.Queue method)

 	

 	(evergreen.tasks.Task method)

K

 	

 	kill() (evergreen.tasks.Task method)

L

 	

 	LifoQueue (class in evergreen.queue)

 	

 	local (class in evergreen.local)

M

 	

 	map() (evergreen.futures.Executor method)

N

 	

 	notify() (evergreen.locks.Condition method)

 	

 	notify_all() (evergreen.locks.Condition method)

O

 	

 	open() (evergreen.io.PipeConnection method)

 	

 	original() (in module evergreen.patcher)

P

 	

 	patch() (in module evergreen.patcher)

 	peername (evergreen.io.TCPClient attribute)

 	

 	(evergreen.io.TCPConnection attribute)

 	PipeClient (class in evergreen.io)

 	PipeConnection (class in evergreen.io)

 	PipeError

 	pipename (evergreen.io.PipeServer attribute)

 	

 	PipeServer (class in evergreen.io)

 	PipeStream (class in evergreen.io)

 	PriorityQueue (class in evergreen.queue)

 	put() (evergreen.queue.Queue method)

 	put_nowait() (evergreen.queue.Queue method)

Q

 	

 	qsize() (evergreen.queue.Queue method)

 	

 	Queue (class in evergreen.queue)

R

 	

 	read_bytes() (evergreen.io.BaseStream method)

 	read_until() (evergreen.io.BaseStream method)

 	read_until_regex() (evergreen.io.BaseStream method)

 	receive() (evergreen.channel.Channel method)

 	

 	(evergreen.io.UDPError method)

 	release() (evergreen.locks.Condition method)

 	

 	(evergreen.locks.RLock method)

 	(evergreen.locks.Semaphore method)

 	remove_reader() (evergreen.loop.EventLoop method)

 	

 	remove_signal_handler() (evergreen.loop.EventLoop method)

 	remove_writer() (evergreen.loop.EventLoop method)

 	RLock (class in evergreen.locks)

 	run() (evergreen.loop.EventLoop method)

 	

 	(evergreen.tasks.Task method)

 	run_forever() (evergreen.loop.EventLoop method)

S

 	

 	Semaphore (class in evergreen.locks)

 	send() (evergreen.channel.Channel method)

 	

 	(evergreen.io.UDPError method)

 	send_exception() (evergreen.channel.Channel method)

 	serve() (evergreen.io.StreamServer method)

 	server (evergreen.io.StreamConnection attribute)

 	set() (evergreen.event.Event method)

 	set_raw_mode() (evergreen.io.TTYStream method)

 	shutdown() (evergreen.futures.Executor method)

 	

 	(evergreen.io.BaseStream method)

 	sleep() (in module evergreen.tasks)

 	sockname (evergreen.io.TCPClient attribute)

 	

 	(evergreen.io.TCPConnection attribute)

 	(evergreen.io.TCPServer attribute)

 	(evergreen.io.UDPError attribute)

 	spawn() (in module evergreen.tasks)

 	

 	start() (evergreen.tasks.Task method)

 	

 	(evergreen.timeout.Timeout method)

 	StderrStream (class in evergreen.io)

 	StdinStream (class in evergreen.io)

 	StdoutStream (class in evergreen.io)

 	stop() (evergreen.loop.EventLoop method)

 	StreamConnection (class in evergreen.io)

 	StreamError

 	StreamServer (class in evergreen.io)

 	submit() (evergreen.futures.Executor method)

 	switch() (evergreen.loop.EventLoop method)

T

 	

 	Task (class in evergreen.tasks)

 	task() (in module evergreen.tasks)

 	task_done() (evergreen.queue.Queue method)

 	TaskExit

 	TaskPoolExecutor (class in evergreen.futures)

 	TCPClient (class in evergreen.io)

 	TCPConnection (class in evergreen.io)

 	TCPError

 	

 	TCPServer (class in evergreen.io)

 	ThreadPoolExecutor (class in evergreen.futures)

 	time() (evergreen.loop.EventLoop method)

 	Timeout (class in evergreen.timeout)

 	TimeoutError

 	TTYError

 	TTYStream (class in evergreen.io)

U

 	

 	UDPEndpoint (class in evergreen.io)

 	

 	UDPError

W

 	

 	wait() (evergreen.event.Event method)

 	

 	(evergreen.locks.Condition method)

 	(in module evergreen.futures)

 	winsize (evergreen.io.TTYStream attribute)

 	

 	write() (evergreen.io.BaseStream method)

 Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

 _static/down-pressed.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Evergreen 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Saúl Ibarra Corretgé.
 Created using Sphinx 1.2.

_static/up.png

_static/comment-close.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/file.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment.png

